Data lineage is the comprehensive tracking of data usage within an organization. This includes how data originates, how it is transformed, how it is calculated, its movement between different systems, and ultimately how it is utilized in applications, reporting, analysis, and decision-making.
With the increasing complexities of business technology, data lineage analysis has become essential for most organizations. This article provides an overview of the fundamentals, importance, uses, and challenges of data lineage.
Data lineage facilitates improved data transparency, quality, and consistency by enabling organizations to track and understand the complete lifecycle of their data assets. It helps with decision-making when sourcing and using data. It also helps with transforming data, especially for larger organizations with mission-critical applications and intricate data landscapes.
There are several factors to consider with data lineage:
Data lineage plays a key role in keeping data valuable and effective in a business setting. Here are a few ways that data lineage can deliver benefits to an organization.
Data has incredible value in an information age. To realize the full value, data must be accurate and accessible. In other words, it becomes trustworthy only when it can be understood by anyone using it, and when the processing steps keep the data accurate. Data lineage provides transparency into the flow of data. It increases understanding and makes it easier for non-technical users to capture insights from existing datasets, especially for aggregated or calculated data.
Data management regulations are becoming more stringent each year. Regulatory standards are tightening, and effective data management is becoming increasingly important. Data lineage can help organizations comply with GDPR, CCPA, and other data privacy laws. The transparency of data lineage makes data access, audits, and overall accountability easier. Accurate data lineage is crucial for demonstrating compliance with regulatory requirements, thereby mitigating the risk of project delays, fines, and other penalties.
Data lineage enables stronger data governance by providing the data to monitor, manage and ensure compliance to issued standards and guidelines. Because data lineage offers traceability of origin, flow, transformation and destination, it allows businesses to improve data quality, reduce inconsistencies and errors, and strengthen data management practices.
Data lineage allows companies to trace the path of data from its current form back to its source. Data lineage offers a transparent record, facilitating the understanding and management of data variability and quality throughout its journey, and ensuring reliable data for decision-making. This is particularly relevant for companies modernizing existing systems.
With data lineage, trust in data accuracy and accessibility, improved data quality, and stronger ability to govern data all triangulate for better collaboration across teams. Data lineage avoids data siloing and facilitates interdepartmental activity. When data engineers and analysts utilize the same set of data, it fosters cross-functional teamwork and minimizes errors due to bad or in consistent data. Data lineage encourages a sense of unification as team members across an organization work from the same, trusted data.
There are multiple ways that data lineage can add business value to organizations.
Zengines has invested in data lineage capabilities to support end-to-end migration of data from existing source systems to new target business systems. Data lineage is often the first research step required to ensure an efficient and accurate data migration.
Data lineage exposes data quality issues by providing a clear view of the data journey, highlighting areas where inconsistencies or errors may have occurred. This makes it easier to engage in effective, detailed data analytics.
Consider, for instance, a financial services company with decades-old COBOL programs. Data lineage provides insights for organizations trying to replicate reporting or other outputs from these aging programs.
Data lineage makes it easier to identify and trace errors back to their source. Finding the root cause of an error quickly is extremely valuable in a world where time is at a premium.
An important aspect of data security and privacy compliance is keeping data safe guarded at all times. Data lineage provides an understanding of the data life cycle that can show information security groups the steps that must be reviewed and secured.
Comprehensive data lineage makes it easier to demonstrate compliance with data privacy regulations. For example, Banks and Payments Processors are subject to GLBA (Gramm-Leach-Bliley Act), PCI DSS(Payment Card Initiative - Data Security Standards), EU GDPR (European General Data Protection Regulation), and many other regulations that protect Personally Identifiable Information (PII). The knowledge of how any data element is used allows it to be protected, masked, or hidden when appropriate.
Data Mesh and Data Fabric are advanced data architectures that help to decentralize data and integrate it across diverse data sources. Understanding the data lineage allows data management teams to make trustworthy data available to Data Mesh / Data Fabric consumers. Data lineage makes it possible to determine the correct data to store and use for a given purpose (decision making, analytics, reporting, etc.). Data lineage is typically part of any new Data Mesh / Data Fabric initiative.
Data lineage is useful but can also face challenges. Here are a few potential issues.
Siloed data continues to be a major hurdle for tracing business data across departments and organizations. Consider when a security trade is being made. The security details are usually maintained in a reference data / Master Data Management application. The bid / ask information comes from many different market vendors and is updated continuously. The trading application computes the value of the trade, and any tax impact is computed in an investment accounting application. Is the same data being used across them all? Do they use different terminology? Do the applications all use the same pricing information? For accurate reporting and good decision making, it is vital that the same data is used in every step.
Mapping data lineage in increasingly complex environments is also a concern. Things like on-site and cloud storage, as well as remote, hybrid, and in-person work environments, make data complexity and fragmentation a growing issue that requires attention.
Historically, capturing and maintaining data lineage has been resource-intensive work performed by analysts with a deep understanding of the business. Given the quantity of data and code involved, a manual approach is prohibitively expensive for most companies. Most software solutions provide a partial view, only showing data stored in relational databases or excluding logic found in computer programs.
The best option is to find a balance between manual and automated solutions that enable cost-effective data lineage frameworks.
Data lineage is more than a backward-looking activity. Organizations also need to maintain up-to-date lineage information as systems are changed and replaced over time. In an era of constant change, data lineage teams are challenged to incorporate new forms of data usage or data transformation.
Data lineage is becoming a critical part of any company’s data management strategy. In an information age where data and analytics are king, data lineage enables companies to maintain clean, transparent, traceable datasets. This empowers data-driven decision-making and encourages cross-collaborative efforts.
Data lineage addresses a central part of business operations. It provides a powerful sense of digital clarity as organizations navigate increasingly complex tools, systems, and regulatory landscapes.
Forward-thinking technical and non-technical leaders alike should be encouraging their organizations to improve their data lineage strategies. Investments in data lineage result in a valuable new data assets that provide greater business agility and competitive advantage.
Data lineage isn’t just a nice-to-have—it’s essential for modern businesses navigating system changes, compliance pressures, and complex tech stacks. Whether you're migrating from legacy systems, improving analytics, or strengthening data governance, data lineage empowers teams to move faster, reduce risk, and make better decisions.
At Zengines, we’ve built our data lineage capabilities to do more than just document data flow. Our lineage engine integrates deeply with legacy codebases, like mainframe COBOL modules, and modern environments alike—giving you full visibility into how data is transformed, used, and governed across your systems. With AI-powered analysis, automation, and an intuitive interface, Zengines transforms lineage from a bottleneck into a business advantage.
Ready to see what intelligent data lineage can do for your organization?

Every enterprise eventually faces a pivotal question: should we connect our systems together, or move our data to a new home entirely? The answer seems simple until you're staring at a 40-year-old mainframe with dwindling support, a dozen point solutions held together by ever-growing integrations, and a budget that doesn't accommodate mistakes.
Data migration and data integration are often confused because they both involve moving data. But they serve fundamentally different purposes - and choosing the wrong approach can cost you years of technical debt, millions in maintenance, or worse, a failed transformation project.
Data migration is about transition and consolidation.
Systems reach end-of-life. Platforms get replaced. Acquisitions require consolidation. Companies outgrow their technology stack and need to move from functionally siloed point solutions to consolidated platforms.
Migration addresses all of these - relocating data from a source system to a target, transforming it to fit the new data model, then retiring the source. The result is a cleaner footprint: fewer systems, fewer dependencies, a tidier architecture.
Data integration is about coexistence.
You're connecting systems so they can share data continuously, in real-time or near-real-time. Both systems stay alive. Think of it like building a bridge between two cities - traffic flows both directions, indefinitely.
On the surface, integration can seem more appealing - it preserves optionality and avoids the hard decision of retiring systems. But optionality has carrying costs. Every bridge you build is a bridge you must maintain, monitor, and update when either system changes. Migration delivers a leaner architecture with less operational overhead.
Migration makes sense when you're ready to consolidate and simplify - especially for operational systems.
Consider migration when:
Integration makes sense when systems genuinely need to coexist and communicate -- particularly for analytical use cases.
Consider integration when:
Migration projects have traditionally been expensive upfront. Research shows that over 80% of data migration projects run over time or budget. A 2021 Forbes analysis found that 64% of data migrations exceed their forecast budget, with 54% overrunning on time.
But here's what those statistics don't capture: much of this cost and risk stems from outdated approaches to migration. Legacy migration projects often relied on manual analysis, hand-coded transformation scripts, and armies of consultants reverse-engineering undocumented systems. The migration itself wasn't inherently expensive - the lack of proper tooling made it expensive.
When migration succeeds, you have a clean slate. The old system is retired. There's no pipeline to maintain, no nightly sync jobs to monitor, no integration layer to update when either system changes. You've reduced your technology footprint.
Integration appears easier at first. You're not touching the legacy data - you're just building a bridge. The upfront cost looks manageable. But that bridge requires constant attention.
According to McKinsey, the "interest" on technical debt includes the complexity tax from "fragile point-to-point or batch data integrations." Engineering teams spend an average of 33% of their time managing technical debt, according to research from Stripe. When you build an integration instead of migrating, you're committing to that maintenance indefinitely.
Gartner estimates that about 40% of infrastructure systems across asset classes already carry significant technical debt. Organizations that ignore this debt spend up to 40% more on maintenance than peers who address it early.
The key insight: integration's "lower cost" is an illusion if you only look at upfront spend. When you factor in total cost of ownership - years of maintenance, incident response, and the opportunity cost of engineers maintaining pipes instead of building value - the calculus often favors migration.
Integration preserves optionality. You can defer the retirement decision. You can keep both systems running while you figure out the long-term strategy. But optionality has carrying costs, and those costs compound over time.
Migration forces a constraint - and constraints drive clarity. When you commit to migration, you're forced to answer hard questions: What data do we actually need? What's the canonical source of truth? What business rules should govern this data going forward? The result is a tidier, more intentional data architecture.
Many organizations choose integration because migration feels too hard. But "too hard" often means "too hard to decide." Integration lets you defer decisions. Migration forces them - and in doing so, delivers a cleaner outcome.
Ask yourself these questions:
For years, integration was perceived as the lesser evil - not because it was the right choice, but because migration seemed too expensive and risky. Organizations built integrations they didn't really want because migration felt out of reach.
That calculation is changing. Modern migration platforms are lowering the barrier to making the right choice - automating the analysis, transformation, and validation work that used to require armies of consultants. When migration's entry cost drops, total cost of ownership (TCO) becomes the deciding factor. And on TCO, migration often wins.
If you're modernizing legacy systems, consolidating point solutions into an ERP, or keeping operational systems lean for faster troubleshooting, migration gives you a cleaner footprint and eliminates technical debt. Yes, it requires commitment upfront. But you're trading short-term focus for long-term simplicity.
If you're feeding analytical systems, connecting platforms that both serve ongoing purposes, or need real-time data flow between coexisting systems, integration is the right tool. Just go in with your eyes open about the maintenance commitment you're making.
The worst outcome is choosing integration because migration seemed too hard - and then spending the next decade maintaining pipes to systems you should have retired years ago.
Zengines is an AI-native data migration platform built to lower the barrier to making the right choice. If you're weighing migration against integration - or stuck maintaining integrations you wish were migrations - we'd love to show you what's now possible. Let's talk.

If you're evaluating Zengines for your data migration or data lineage projects, one of your first questions is likely: "Where will this run, and where will our data live?"
It's a critical question. Data migrations involve your most sensitive information, and your choice of deployment architecture impacts everything from security and compliance to speed-to-value and ongoing management.
The good news? Zengines offers four deployment options designed to meet different organizational needs. This guide will help you understand each option and identify which might be the best fit for your situation.
What it is: Fully managed SaaS deployment in US-based AWS data centers
Who it's designed for:
Key benefits:
What to consider: If your organization has data sovereignty requirements (especially for EU data), strict requirements about data leaving your environment, or compliance frameworks that restrict US-based cloud processing, one of the other options below may be a better fit.
What it is: Fully managed SaaS deployment in your preferred AWS region (EU, APAC, etc.)
Who it's designed for:
Key benefits:
What to consider: While this addresses data residency, it's still a multi-tenant architecture with data processed in Zengines' cloud environment. If your compliance framework requires dedicated infrastructure or data that never leaves your environment, consider Option 3.
What it is: Zengines deployed entirely within your own AWS environment under your control
Who it's designed for:
Key benefits:
What to consider:
Technical requirements: Zengines will provide detailed specifications for EC2 instances, storage, and AWS services needed. Having this conversation early with your infrastructure team helps ensure smooth deployment.
What it is: Private cloud deployment on your Azure or GCP environment
Who it's designed for:
Current status: As of September 2025, multi-cloud support is in active development. If your organization has strong Azure or GCP requirements, we'd welcome a conversation about timeline and potential early adopter partnerships.
What to consider: If you need Zengines capabilities today and your only concern is cloud platform, Option 3 (AWS Cloud Account) might serve as a bridge solution until your preferred platform is supported.
As you evaluate which deployment option fits your needs, consider these questions:
Regulatory and Compliance:
Infrastructure and Resources:
Timeline and Urgency:
Security Requirements:
Budget Considerations:
Choosing the right deployment architecture is an important decision, but it shouldn't slow down your evaluation. Here's how to move forward:
Data migration and mainframe modernization are complex enough without worrying about whether your tools can work within your architecture. Zengines' flexible deployment options mean you don't have to compromise between the capabilities you need and the compliance, security, or infrastructure requirements you must meet.
Whether you need to start analyzing data tomorrow (hosted options) or require complete control within your own infrastructure (private cloud), there's a path forward.
Ready to discuss which deployment option fits your needs? Contact our team to start the conversation. We'll ask the right questions, understand your requirements, and help you make a confident decision.
.png)
BOSTON, MA – November 12, 2025 – Zengines is pleased to announce that the company's CEO and Co-Founder, Caitlyn Truong, has been recognized as a winner of the 2025 Info-Tech Awards by Info-Tech Research Group, a global leader in IT research and advisory.
Truong has been named a winner in the Women Leading IT award category.
The Info-Tech Awards celebrate outstanding achievements in IT, recognizing both individual leaders and organizations that have demonstrated exceptional leadership, innovation, and impact. The Women Leading IT Award celebrates exceptional women whose strength of leadership is driving innovation and transformation in their organization and the IT industry.
Since founding Zengines in 2020, Truong has led the development of AI-powered solutions that address two of the most pressing data management challenges facing enterprise organizations: data migration and data lineage. Under her leadership, Zengines has partnered with some of the largest enterprises to accelerate and de-risk their most critical business initiatives—from customer onboarding and system modernization to M&A integration and compliance requirements. The company's innovative approach helps organizations complete data conversions up to 80% faster while significantly reducing risk and cost, transforming processes that traditionally required large teams of specialists and months of manual work into streamlined operations achievable in minutes or days through AI-driven automation.
"I'm deeply honored by this recognition from Info-Tech and applaud their commitment to celebrating women in tech," says Caitlyn Truong, CEO of Zengines. "At Zengines, we're solving some of the most complex challenges the industry hasn't been able to crack: helping companies understand, modernize, and move their most valuable asset - their data. We're succeeding thanks to our incredible teammates - including women leaders who earned their place through grit and skill. When we amplify this power between women in tech - sharing knowledge, championing success, staying in the fight - we create leaders who know how to do hard things. That's the future worth building."
The 2025 Info-Tech Award winners were selected from a competitive pool of hundreds of candidates. The Women Leading IT Award winners were determined by their track record of innovation, leadership, and business impact, and their contribution to the advancement of women in technology through mentorship, advocacy, or initiatives that support diversity in IT.
"Women Leading IT within the 2025 Info-Tech Awards celebrates leaders whose vision and execution have driven measurable progress in innovation, inclusion, and organizational performance," says Tom Zehren, Chief Executive Officer at Info-Tech Research Group. "Congratulations to this year's honorees for strengthening their organizations through strategic leadership and opening doors for the future generation of IT leaders. Each Women Leading IT winner for 2025 exemplifies the strength of inclusive leadership that is shaping IT's next chapter."
To view the full list of winners and learn more about the Info-Tech Awards, please click here.
Zengines is a technology company that transforms how organizations handle data migrations and mainframe modernization. Zengines serves business analysts, developers, and transformation leaders who need to map, change, and move data across systems. With deep expertise in AI, data migration, and legacy systems, Zengines helps organizations reduce time, cost, and risk associated with their most challenging data initiatives. Learn more at zengines.ai.
Info-Tech Research Group is the world's leading research and advisory firm, proudly serving over 30,000 IT, HR, and marketing professionals. The company produces unbiased, highly relevant research and provides industry-leading advisory services to help leaders make strategic, timely, and well-informed decisions. For nearly 30 years, Info-Tech has partnered closely with teams to provide them with everything they need, from actionable tools to analyst guidance, ensuring they deliver measurable results for their organizations.
To learn more about Info-Tech Research Group or to access the latest research, visit infotech.com.
.png)