What do the Phoenix Suns, a Regional Healthcare Plan, Commercial HVAC software, and a Fortune 500 bank have in common? They all struggle with data migration headaches.
This revelation – while not entirely surprising to me as someone who's spent years in data migration – might shock many readers: every single organization, regardless of industry or size, faces the same fundamental data conversion challenges.
With over 3,000 IT executives gathered under one roof – I was able to test my hypotheses about both the interest of AI in data migrations and data migration pain points across an unprecedented cross-section of organizations in just three days. The conversations I had during networking sessions, booth visits, and between keynotes consistently reinforced that data migration remains one of the most pressing challenges facing organizations today – regardless of whether they're managing player statistics for a professional sports team or customer data for a local bank with three branches.
The conference opened with Dr. Tom Zehren's powerful keynote, "Transform IT. Transform Everything." His message struck a chord: IT leaders are navigating unprecedented global uncertainty, with the World Uncertainty Index spiking 481% in just six months. What resonated most with me was his call for IT professionals to evolve into "Enterprise Technology Officers" – leaders capable of driving organization-wide transformation rather than just maintaining systems.
This transformation mindset directly applies to data migration across organizations of all sizes – especially as every company races to implement AI capabilities. Too often, both large enterprises and growing businesses treat data conversion as a technical afterthought rather than the strategic foundation for business flexibility and AI readiness. The companies I spoke with that had successfully modernized their systems were those that approached data migration as an essential stepping stone to AI implementation, not just an IT project.
Malcolm Gladwell's keynote truly resonated with me. He recounted his work with Kennesaw State University and Jiwoo, an AI Assistant that helps future teachers practice responsive teaching. His phrase, "I'm building a case for Jiwoo," exemplified exactly what we're doing at Zengines – building AI that solves real, practical problems.
Gladwell urged leaders to stay curious when the path ahead is unclear, make educated experimental bets, and give teams freedom to challenge the status quo. This mirrors our approach: taking smart bets on AI-powered solutions rather than waiting for the "perfect" comprehensive data management platform.
John Rossman's "Winning With Big Bets in the Hyper Digital Era" keynote challenged the incremental thinking that plagues many IT initiatives. As a former Amazon executive who helped launch Amazon Marketplace, Rossman argued that "cautious, incremental projects rarely move the needle." Instead, organizations need well-governed big bets that tackle transformational opportunities head-on.
Rossman's "Build Backward" method resonated particularly strongly with me because it mirrors exactly how we developed our approach at Zengines. Instead of starting with technical specifications, we worked backward from the ultimate outcome every organization wants from data migration: a successful "Go Live" that maintains business continuity while unlocking new capabilities. This outcome-first thinking led us to focus on what really matters – data validation, business process continuity, and stakeholder confidence – rather than just technical data movement.
Steve Reese's presentation on "Addictive Leadership Stories in the League" provided fascinating insights from his role as CIO of the Phoenix Suns. His central question – "Are you the kind of leader you'd follow?" – cuts to the heart of what makes technology transformations successful.
Beyond the keynotes, Day 2's breakout sessions heavily focused on AI governance frameworks, with organizations of all sizes grappling with how to implement secure and responsible AI while maintaining competitive speed. What became clear across these discussions is that effective AI governance starts with clean, well-structured data – making data migration not just a technical prerequisite but a governance foundation. Organizations struggling with AI ethics, bias detection, and regulatory compliance consistently traced their challenges back to unreliable or fragmented data sources that added challenge and complexity to implement proper oversight and control mechanisms.
The most valuable aspect of Info-Tech LIVE wasn't just the keynotes – it was discovering how AI aspirations are driving data migration needs across organizations of every size. Whether I was talking with the CIO of a major healthcare system planning AI-powered diagnostics, a mid-market logistics company wanting AI route optimization, or a software development shop building AI-solutions for their clients, the conversation inevitably led to the same realization: their current data challenges couldn't support their AI ambitions.
The Universal AI-Data Challenge: Every organization, regardless of size, faces the same fundamental bottleneck: you can't implement effective AI solutions on fragmented, inconsistent, or poorly integrated data. This reality is driving a new wave of data migration projects that organizations previously might have delayed.
Throughout three days, the emphasis was clear: apply AI for measurable value, not trends. This aligns perfectly with our philosophy. We're solving specific problems:
Info-Tech's theme perfectly captures what we're seeing: organizations aren't just upgrading technology – they're fundamentally transforming operations. At the heart of every transformation is data migration. Organizations that recognize this shift early – and build migration capabilities rather than just executing migration projects – will have significant advantages in an AI-driven economy.
Zengines not just building a data migration tool – we're building an enduring capability for business transformation. When organizations can move data quickly and accurately, they can accelerate digital initiatives, adopt new technologies fearlessly, respond to market opportunities faster, and reduce transformation costs.
Malcolm Gladwell's thoughts on embracing uncertainty and making experimental bets stayed with me. Technology will continue evolving rapidly, but one constant remains: organizations will always need to move data between systems.
Our mission at Zengines is to make that process so seamless that data migration becomes an enabler of transformation rather than a barrier. Based on the conversations at Info-Tech LIVE, we're solving one of the most universal pain points in business technology.
The future belongs to organizations that can transform quickly and confidently. We're here to make sure data migration never stands in their way.
Interested in learning how Zengines can accelerate your next data migration or help you understand your legacy systems? Contact us to discuss your specific challenges.
With 96% of companies moving mainframe workloads to the cloud, yet 74% of modernization projects failing, organizations need a systematic approach to refactoring legacy systems. The difference between success and failure lies in addressing three critical challenges: dependency visibility, testing optimization, and knowledge democratization.
Mainframe systems built over decades contain intricate webs of dependencies that resist modernization, but the complexity runs deeper than most organizations realize. Unlike modern applications designed with clear interfaces, documentation standards and plentiful knowledge resources, legacy systems embed business logic within data relationships, file structures, and program interactions that create three critical failure points during mainframe refactoring:
Hidden Dependencies: Runtime data flows and dynamic relationships that static analysis cannot reveal, buried in millions of lines of code across interconnected systems.
Invisible Testing Gaps: Traditional validation approaches fail to catch the complex data transformations and business logic embedded in mainframe applications, leaving critical edge cases undiscovered until production.
Institutional Knowledge Scarcity: The deep understanding needed to navigate these invisible complexities exists only in the minds of departing veterans.
Any one of these challenges can derail a refactoring project. Combined, they create a perfect storm that explains why 74% of modernization efforts fail. Success requires ensuring this critical information is available throughout the refactoring effort, not left to chance or discovery during code transformation.
The Problem: Runtime data flows and dynamic dependencies create invisible relationships that static analysis cannot reveal.
□ Trace Data Element Journeys Across All Systems
□ Understand Database and Program Execution Patterns
□ Access Hidden Business Rules
□ Generate Impact Analysis
Manual Approach: Teams spend months interviewing SMEs, reading through millions of lines of undocumented code, and creating spreadsheets to track data flows and job dependencies. The scale and complexity make it impossible to find all relationships—critical dependencies exist in JCL execution sequences, database navigation patterns, and runtime behaviors that are buried in decades of modifications. Even after extensive documentation efforts, teams miss interconnected dependencies that cause production failures.
With Zengines: Complete data lineage mapping across all systems in days. Interactive visualization shows exactly how customer data flows from the 1985 COBOL program through job control sequences, database structures, and multiple processing steps, including execution patterns and database behaviors that documentation never captured.
The Problem: Traditional testing approaches fail to validate the complex data transformations and business logic embedded in mainframe applications. While comprehensive testing includes performance, security, and integration aspects, the critical foundation is ensuring data accuracy and transformation correctness.
□ Establish Validation Points at Every Data Transformation
□ Generate Comprehensive Data-Driven Test Scenarios
□ Enable Data-Focused Shadow Testing
□ Validate Data Integrity at Scale
Manual Approach: Testing teams manually create hundreds of test cases, then spend weeks comparing data outputs from old and new systems. The sheer volume of data transformation points makes comprehensive coverage impractical—when data discrepancies appear across thousands of calculation steps, teams have no way to trace where in the complex multi-program data flow the difference occurred. Manual comparison of data transformations across interconnected legacy systems becomes impossible at scale.
With Zengines: Enable test generation automation to create thousands of data scenarios based on actual processing patterns. Self-service validation at every data transformation checkpoint to pinpoint exactly where refactored logic produces different data results—down to the specific calculation or business rule application.
The Problem: Critical system knowledge exists only in the minds of retiring experts, creating bottlenecks that severely delay modernization projects.
□ Access Comprehensive Data Relationship Mapping
□ Extract Business Context from Legacy Systems
□ Enable Independent Impact Analysis
□ Eliminate SME Consultation Bottlenecks
Manual Approach: Junior developers submit tickets asking "What happens if I change this customer validation routine?" and wait 2 weeks for Frank to review the code and explain the downstream impacts. The interconnected nature of decades-old systems makes it impractical to document all relationships—Frank might remember 47 downstream systems, but miss the obscure batch job that runs monthly. The breadth of institutional knowledge across millions of lines of code is impossible to capture manually, creating constant bottlenecks as project velocity crawls.
With Zengines: Any team member clicks on the validation routine and instantly sees its complete impact map—every consuming program, all data flows, and business rules. Questions get answered in seconds instead of weeks, keeping modernization projects on track.
Modern platforms like Zengines - Accelerate & De-Risk Your Data Projects automate much of the dependency mapping, testing framework creation, and knowledge extraction.
Successful mainframe refactoring demands more than code conversion expertise. Organizations that master data dependencies, implement lineage-driven testing, and democratize institutional knowledge create sustainable competitive advantages in their modernization efforts. The key is addressing these challenges systematically before beginning code transformation, not discovering them during production deployment.
Next Steps: Assess your current capabilities in each area and prioritize investments based on your specific modernization timeline and business requirements.
Your mainframe processes billions in transactions daily, but three critical risks could blindside your business tomorrow. Whether you're steering operations as CEO or providing oversight as a board member, mainframe data lineage isn't just technical infrastructure—it's your shield against reputational and financial catastrophe.
As a CEO running a business on mainframe core, your competitive advantage may be sitting on a ticking time bomb. Here are the three critical questions every CEO must ask their CTO:
"How many of our mainframe experts are within 5 years of retirement?" If that number is above 40%, you're in the danger zone. The knowledge walking out your door isn't replaceable with a job posting. Comprehensive mainframe data lineage documentation is not optional – it must capture not just what the code does, but how data flows through your critical business processes.
"Can we trace every customer data point from source to report within 24 hours?" If the answer is anything but "yes," your reputation is at risk. Regulators don't care about mainframe complexity, they care about data accuracy and auditability. Mainframe data lineage isn't optional, it's your insurance policy against million-dollar compliance failures.
"When mainframe data feeds our analytics wrong, how quickly do we know?" If your team can't answer this, you're making business decisions on potentially corrupted data. Mainframe data lineage answers questions about data sources, data flows and run-time considerations – which inform system changes before they impact customer experience or financial reporting.
Board members face unique oversight challenges when it comes to mainframe risk. Your fiduciary duty extends to technology risks that could devastate shareholder value overnight. Here are the three governance priorities for your executive team:
Quarterly "Data Integrity Dashboard" reporting is non-negotiable, showing complete mainframe data lineage coverage. Your executive team must demonstrate: Can we trace every regulatory report back to its mainframe source data? How quickly can we identify data issues before they become compliance violations? Red flag: If they can't show data lineage maps for your core, your audit risk is unacceptable.
Documented mainframe data lineage that captures retiring experts' institutional knowledge is essential. Key question: "When our senior mainframe developer retires, will the next person understand how customer data flows through our systems?" If management can't show comprehensive data lineage documentation, you're gambling with operational continuity.
Establish automated mainframe data lineage monitoring with board-level dashboards. Essential metrics: Data quality scores, lineage completeness percentage, time to detect data anomalies. The question that should drive executive action: "If our mainframe data feeds incorrect information to regulators or customers, how fast do we know and respond?"
Challenge your IT leadership to implement foundational, automated mainframe data lineage tracking within 90 days. Don't accept "it's too complex" as an answer. The businesses that can prove their data integrity while competitors guess at theirs will dominate regulatory discussions and customer trust.
Your mainframe data lineage isn't just compliance – it's competitive intelligence about your own operations.
Establish clear data lineage requirements as part of your risk management framework. Set measurable targets: 95% mainframe data lineage coverage with automated data quality monitoring across all critical flows within 12 months.
Most importantly: Make mainframe data lineage a standing agenda item, not buried in IT reports. Your ability to defend data accuracy in regulatory hearings depends on it.
Whether you're making operational decisions as a CEO or providing oversight as a board member, mainframe data lineage represents the convergence of risk management and competitive advantage. Organizations that master this capability while competitors remain in the dark will define the next decade of business leadership.
The question isn't whether you can afford to implement comprehensive mainframe data lineage—it's whether you can afford not to.
How confident is your leadership team in the data flowing from your mainframe to your most critical business decisions?
The financial services industry is learning expensive lessons about the true cost of treating mainframe systems as "black boxes." Over the past few years, three major banking institutions have paid nearly $1 billion in combined penalties—not for exotic trading losses or cyber breaches, but for fundamental failures in data visibility and risk management that proper mainframe data lineage could have prevented.
With mainframes processing 70% of global financial transactions daily, 95% of credit card transactions, and 87% of ATM transactions, these aren't isolated incidents—they're wake-up calls for an industry that can no longer afford operational blindness in its most critical infrastructure.
In March 2024, JPMorgan Chase paid $348 million in penalties for a decade-long failure that left billions of transactions unmonitored across 30+ global trading venues. The US Federal Reserve and Office of the Comptroller of the Currency found that "certain trading and order data through the CIB was not feeding into its trade surveillance platforms" between 2014 and 2023.
This wasn't oversight—it was systematic breakdown of market conduct risk controls required under US banking regulations.
The Mainframe Connection
JPMorgan, like 92 of the world's top 100 banks, relies heavily on mainframe systems for core trading operations. These IBM Z systems process the vast majority of transaction volume, but the critical problem emerges when trading data originates on mainframes and feeds downstream surveillance platforms. Without comprehensive data lineage, gaps create dangerous blind spots where billions in transactions can slip through unmonitored.
The $348 million penalty signals that regulators expect complete transparency in data flows. For banks running critical operations on mainframe systems without proper data lineage, JPMorgan's experience serves as an expensive reminder: you can't manage what you can't see.
The pain continued with Citibank's even costlier lesson. In October 2020, Citi received a $400M penalty from the Office of the Comptroller of the Currency, followed by an additional $136M in combined fines in 2024 from both the OCC and Federal Reserve—totaling $536M for systematic failures in data governance and risk data aggregation that regulators called "longstanding" and "widespread."
The Core Problem
The OCC found that Citi failed to establish effective risk data aggregation processes, develop comprehensive data governance plans, produce timely regulatory reporting, and adequately report data quality status. Some issues dated back to 2013—nearly a decade of compromised data visibility.
The Mainframe Reality
Like virtually all major banks, Citi runs core banking operations on mainframes where critical risk data originates. Every loan, trade, and customer transaction flows through these platforms before being aggregated into enterprise risk reports that regulators require. The problem? Most banks treat mainframes as "black boxes" where data transformations remain opaque to downstream risk management systems.
Citi's penalty represents the cost of operational blindness in critical infrastructure. The regulatory failures around data governance and risk aggregation highlight exactly the kind of visibility gaps that comprehensive mainframe data lineage addresses.
The pattern culminates with Danske Bank's ongoing struggle, which has resulted in $2B+ in penalties since 2020. While these stemmed from various violations, many could likely have been exposed earlier through proper BCBS 239 compliance. The bank's transaction monitoring failures and AML deficiencies represent clear gaps in the comprehensive risk data aggregation that BCBS 239 requires.
BCBS 239: Banking's Most Persistent Challenge
Nearly 11 years after publication and 9 years past its deadline, BCBS 239 remains banking's most persistent regulatory challenge. The November 2023 progress report reveals a sobering reality: only 2 out of 31 global systemically important banks achieved full compliance. Not a single principle has been fully implemented across all assessed banks.
The Escalating Consequences
The ECB has made BCBS 239 deficiencies a top supervisory priority for 2025-2027, explicitly warning that non-compliance could trigger "enforcement actions, capital add-ons, and removal of responsible executives." With regulatory patience exhausted, the consequences are no longer just financial—they're existential.
Most BCBS 239 discussions miss a critical point: the majority of banks' risk data originates on mainframe systems that handle core banking operations and risk calculations. The Basel Committee's assessment highlights the core issue: "Several banks still lack complete data lineage, which complicates their ability to harmonize systems and detect data defects."
With mainframes handling 83% of all global banking transactions, understanding these systems is no longer optional. Yet banks continue to struggle because:
The solution lies in comprehensive mainframe data lineage that addresses these fundamental blind spots:
Complete Visibility: Modern tools can trace data flows from mainframe CICS transactions through DB2 operations to downstream systems, mapping exactly how critical risk data moves through complex transformations that conventional tools miss.
Business Accessibility: The right platforms enable business analysts to discover and act on mainframe information without requiring technical expertise—transforming data lineage from technical obscurity into actionable business intelligence.
Automated Monitoring: Real-time tracking of mainframe batch processes detects when critical risk calculations fail or produce inconsistent results, preventing the systematic failures that cost JPMorgan, Citi, and Danske Bank billions.
Regulatory Preparedness: Banks can trace exactly where specific data resides within mainframe environments and extract it rapidly when regulators demand it—the core capability that BCBS 239 requires.
After a decade of BCBS 239 implementation struggles and nearly $1 billion in recent penalties, it's clear traditional approaches aren't working. Banks still wrestling with data aggregation challenges haven't invested in understanding their mainframe data flows.
The evidence is overwhelming:
With the ECB intensifying enforcement and supervisory patience exhausted, mainframe data lineage isn't just modernization—it's regulatory survival infrastructure.
The financial services industry stands at a crossroads. Banks can continue treating mainframe systems as mysterious legacy platforms while paying escalating regulatory penalties, or they can invest in the comprehensive data lineage capabilities that modern compliance demands.
The choice is clear: illuminate your mainframe data flows or continue paying the billion-dollar cost of operational blindness. With regulators expecting rapid and recurring risk data aggregation, banks can no longer afford to manage what they cannot see.
Ready to illuminate your mainframe data flows and achieve regulatory compliance? The path forward starts with understanding what you can't currently see—before regulators demand answers you can't provide.